當前位置

首頁 > 英語學習 > 英語閱讀技巧 > 新鮮事:星際旅行要實現了?

新鮮事:星際旅行要實現了?

推薦人: 來源: 閱讀: 2.32W 次

​核能作爲一種優勢明顯的新能源,真是讓人又愛又怕。核泄漏造成的災難屢次出現,讓它備受爭議。人類何時才能真正的駕馭核能呢?

新鮮事:星際旅行要實現了?

最近一支澳大利亞研究團隊首創一種新技術,稱能在五年內駕馭核聚變, 並且清潔,絕對安全,反應堆甚至可以放置在人口密集的地區。由此推斷,核能的廣泛應用或可帶來前所未有的各領域革新,就連星際旅行也不再是白日夢。

不妨考慮一下,現在去預定一張五年後飛往火星的飛船票先?

​科學家們最近發表的關於新型核聚變技術的研究成果很鼓舞人心,但要獲得“清潔能源的聖盃”我們還需要繼續努力。
Recent reports from scientists pursuing a new kind of nuclear fusion technology are encouraging, but we are still some distance away from the "holy grail of clean energy".
 
這項技術是由新南威爾士大學的海因裏希·霍拉和他的同事共同開發的 ,他們使用功率 強大的激光把氫和硼原子融合在一起,以便釋放出可以用來發電的高能粒子。
The technology developed by Heinrich Hora and his colleagues at the University of NSW uses powerful lasers to fuse together hydrogen and boron atoms, releasing high-energy particles that can be used to generate electricity.
  
然而,與其他類型的核聚變技術一樣,該技術的難點在於如何製造一臺能夠有效啓動反應並利用其產生的能量的機器。
As with other kinds of nuclear fusion technology, however, the difficulty is in building a machine that can reliably initiate the reaction and harness the energy it produces.
 
什麼是聚變? 
What is fusion?
 
聚變就是爲太陽和恆星提供能量的過程。當兩個原子的原子核被迫緊靠在一起的時候,它們就會結合成一個原子並在這個過程中釋放能量。
Fusion is the process that powers the Sun and the stars. It occurs when the nuclei of two atoms are forced so close to one another that they combine into one, releasing energy in the process. 
 
如果能在實驗室控制這種反應,它就有可能在幾乎零碳排放的情況下,提供近乎無限的基載電力。
If the reaction can be tamed in the laboratory, it has the potential to deliver near-limitless baseload electricity with virtually zero carbon emissions.
  
氫和硼的實驗確實產生了極好的結果,但是霍拉和他的同事預期在5年裏實現控制核聚變能量的想法似乎還爲時過早。其他人也嘗試過用激光觸發核聚變。例如,美國國家點火裝置實驗室曾嘗試用192束激光照射一個小靶核來實現氫-氘聚變點火。
The experiments with hydrogen and boron have certainly produced fascinating physical results, but projections by Hora and colleagues of a five-year path to realising fusion power seem premature. Others have attempted laser-triggered fusion. The National Ignition Facility in the US, for example, has attempted to achieve hydrogen-deuterium fusion ignition using 192 laser beams focused on a small target. 
 
這些實驗有三分之一達到了單次實驗所需的點火條件。其中面臨的挑戰有目標的精確定位、激光束的不均勻性以及目標內爆時的不穩定性。
These experiments reached one-third of the conditions needed for ignition for a single experiment. The challenges include precise placement of the target, non-uniformity of the laser beam, and instabilities that occur as the target implodes.
 
這些實驗每天最多能進行兩次。相比之下,據估計,一個發電廠可能需要每秒進行相當於這樣10次的實驗。
These experiments were conducted at most twice per day. By contrast, estimates suggest that a power plant  would require the equivalent of 10 experiments per second.
 
也就是說,總有巧妙創新和提出新概念的空間,而且我們很高興能看到在覈聚變科學上進行的各種投資。
That said, there is always room for smart innovation and new concepts, and it is wonderful to see all kinds of investment in fusion science.
 

多知道一點

激光核聚變

激光核聚變是以高功率激光作爲驅動器的核聚變。隨着激光技術的發展,1963年蘇聯科學家,1964年中國科學家王淦昌分別獨立提出了用激光照射實現受控熱核聚變反應的構想。激光核聚變要把直徑爲1毫米的聚變燃料小球均勻加熱到1億度,激光器的能量必須大於1億焦,這在技術上是很難做到的。直到1972年美國科學家提出了向心爆聚原理以後,激光核聚變才成爲受控熱核聚變研究中與磁約束聚變平行發展的研究途徑。