當前位置

首頁 > 英語閱讀 > 雙語新聞 > 這傢俬人火箭公司稱將使衛星發射成本降低90%

這傢俬人火箭公司稱將使衛星發射成本降低90%

推薦人: 來源: 閱讀: 2.97K 次

Using a rocket consisting of 3D-printed parts, Rocket Lab intends to put small satellites weighing as much as 220 pounds into orbit above the Earth, all for a price of $4.9 million per launch. Depending on the type and size of a payload, most launches these days start at $50 million.

利用一枚完全由3D打印部件構成的火箭,火箭實驗室公司(Rocket Lab)打算將僅重220磅的小衛星送入繞地軌道,每次發射要價僅爲490萬美元。而現在絕大多數發射的起價就是5000萬美元,具體價位取決於有效載荷的類型和大小。

But, CEO Peter Beck wants to make one thing clear about its Electron rocket: This isn’t about owning the space launch market or undercutting SpaceX or ULA for their lucrative NASA or military launch contracts. “We’re not looking to build a family of vehicles, we’re not looking to fly people,” Beck tells Fortune. “This is about increasing launch frequency and reducing the cost of building space infrastructure.”

不過,對於該公司的Electron火箭,首席執行官彼得o貝克想澄清一點:這款產品並不想主宰航空發射市場,也不是要通過低價和Space X或聯合發射聯盟爭搶利潤豐厚的美國宇航局或軍方的發射合同。貝克對《財富》雜誌表示:“我們並不是要打造一個火箭家族,並不打算載人發射。我們只是希望提高發射頻率,同時降低空間基礎設施的建造成本。”

這傢俬人火箭公司稱將使衛星發射成本降低90%

Space infrastructure is key to both future operations in space and to creating a better future on the ground, he adds. Both technology and the market are gravitating towards small satellites (think OneWeb’s proposed small satellite Internet constellation, or a similar initiative recently proposed by Google and SpaceX). The startup’s low price and fast turnaround—it can manufacture critical parts within days—for launches could make it an attractive option for customers that don’t want to wait months for a shared ride on a larger rocket.

他補充稱,空間基礎設施既是未來空間活動的關鍵,也是爲地面生活探索更好未來的關鍵。目前,技術和市場都更傾向於選擇小型衛星。比如,衛星互聯網公司OneWeb計劃推出小型衛星互聯網羣,谷歌公司及Space X公司近期也提出類似計劃。對那些不想等上數月,只爲了在一枚更大火箭上分享艙位的客戶來說,這家初創企業的低價格和快速週轉——它可以在數天內生產出關鍵零部件——是個頗有吸引力的選擇。

The rocket’s Rutherford engine achieves its cost efficiencies by replacing pricey turbopump machinery with much simpler electric motors powered by lithium polymer batteries, which coupled with its 3D printed components, reduces costs, complexity and weight.

這種火箭的Rutherford引擎之所以節省成本,奧妙在於它將昂貴的渦輪泵發動機換成了結構簡單得多、由鋰聚合物驅動的電動機,與3D打印的零部件相結合後,它就能將火箭的成本、複雜程度和重量顯著降低。

In a conventional liquid-fueled rocket engine, turbomachinery pumps the precise mix of liquid fuel and liquid oxygen into the engine’s combustion chamber, where it is burned to provide thrust. Those turbopumps are complex pieces of hardware that require their own engine to operate at the high performance necessary to make the rest of the engine function properly. They’re also to blame for a fair amount of rocket engine failures.

在傳統的液體燃料火箭引擎中,渦輪機械將精確配比的液體燃料和液氧泵入引擎的燃燒室後,兩者混合燃燒來產生推力。這些渦輪泵由極其複雜的部件構成,這些部件又需要自己的引擎高效運行才能讓引擎的其他部分有效運轉。這類引擎還因故障頻發而飽受詬病。

Breakthroughs in both battery efficiency and additive manufacturing have made the rocket and its engine possible, but the driving force behind Rocket Lab isn’t building the smartest, most technologically sophisticated rocket, says Beck. “The electric turbopump and 3D printing are cool, but we’re not doing them because they’re cool,” he says. “We’re doing them because it’s the only way to get the launch frequency that we want at the cost that we want.”

電池能效和添加物製造技術的突破,使這種火箭及其引擎應運而生,但貝克表示,火箭實驗室的動機並不是打造最聰明、技術上最精密的火箭。他說:“電動渦輪泵和3D打印確實很酷,但我們並不是因爲它們很酷才採用的。之所以採用它們,是因爲只有這樣,我們才能以想要的成本實現我們想要的發射頻率。”

Frequency is a big part of Rocket Lab’s business plan. Where small satellite customers often have to wait months to piggyback their payloads on the backs of larger commercial satellite launches, Rocket Lab could integrate a payload into a rocket and launch within weeks, which raises the prospect that it could launch as frequently as the market demands. Satellites could go to orbit and begin producing value as soon as they’re ready at a launch cost comparable to a ride-share on a larger rocket.

發射頻率是火箭實驗室商業計劃中很重要的一塊。小客戶通常不得不等上數月,才能把自己的有效載荷裝上較大的商業衛星,而火箭實驗室就能把這種載荷完全放在一枚火箭上,幾周內即可發射,將來它或許就能按照市場所需頻繁發射。一旦這類衛星的發射成本和搭載在較大火箭上發射的成本相當,它們就能升入軌道並開始產生價值。

Given that the small satellite industry is growing by double-digit percentages year-over-year (there were roughly 150 small satellite launches in 2014 with more predicted in 2015 and beyond), a $5 million rocket could find a healthy market segment to serve. Rocket Lab will test Electron throughout the rest of this year, with its first commercial launch slated for 2016.

鑑於小型衛星產業正以兩位數的年增長率快速發展(2014年約有150顆小型衛星升空,2015年及以後預計會有更多),一枚價值500萬美元的火箭可以獲得一個更健康的細分市場。今年火箭實驗室將繼續測試其電動火箭,首次商業發射預計將在2016年進行。